
Supplementary Information
From Louvain to Leiden: guaranteeing well-connected communities

V.A. Traag,∗ L. Waltman, and N.J. van Eck
Centre for Science and Technology Studies, Leiden University, the Netherlands

Appendix A: Pseudo-code and mathematical notation

Pseudo-code for the Louvain algorithm and the Leiden algorithm is provided in Algorithms A.1 and A.2, respectively.
Below we discuss the mathematical notation that is used in the pseudo-code and also in the mathematical results
presented in Appendices C, D, and E. There are some uncommon elements in the notation. In particular, the idea of
sets of sets plays an important role, and some concepts related to this idea need to be introduced.

Let G = (V,E) be a graph with n = |V | nodes and m = |E| edges. Graphs are assumed to be undirected. With the
exception of Theorem 14 in Appendix E, the mathematical results presented in this paper apply to both unweighted
and weighted graphs. For simplicity, our mathematical notation assumes graphs to be unweighted, although the
notation does allow for multigraphs. A partition P = {C1, . . . , Cr} consists of r = |P | communities, where each
community Ci ⊆ V consists of a set of nodes such that V =

⋃
i Ci and Ci ∩ Cj = ∅ for all i 6= j. For two sets R and

S, we sometimes use R+ S to denote the union R ∪ S and R− S to denote the difference R \ S.
A quality function H(G,P) assigns a “quality” to a partition P of a graph G. We aim to find a partition with the

highest possible quality. The graph G is often clear from the context, and we therefore usually write H(P) instead
of H(G,P). Based on partition P , graph G can be aggregated into a new graph G′. Graph G is then called the base
graph, while graph G′ is called the aggregate graph. The nodes of the aggregate graph G′ are the communities in the
partition P of the base graph G, i.e. V (G′) = P . The edges of the aggregate graph G′ are multi-edges. The number of
edges between two nodes in the aggregate graph G′ equals the number of edges between nodes in the two corresponding
communities in the base graph G. Hence, E(G′) = {(C,D) | (u, v) ∈ E(G), u ∈ C ∈ P , v ∈ D ∈ P}, where E(G′)
is a multiset. A quality function must have the property that H(G,P) = H(G′,P ′), where P ′ = {{v} | v ∈ V (G′)}
denotes the singleton partition of the aggregate graph G′. This ensures that a quality function gives consistent results
for base graphs and aggregate graphs.

We denote by P(v 7→ C) the partition that is obtained when we start from partition P and we then move node
v to community C. We write ∆HP (v 7→ C) for the change in the quality function by moving node v to community
C for some partition P . In other words, ∆HP (v 7→ C) = H(P(v 7→ C)) −H(P). We usually leave the partition P
implicit and simply write ∆H(v 7→ C). Similarly, we denote by ∆HP (S 7→ C) the change in the quality function by
moving a set of nodes S to community C. An empty community is denoted by ∅. Hence, ∆HP (S 7→ ∅) is the change
in the quality function by moving a set of nodes S to an empty (i.e. new) community.

Now consider a community C that consists of two parts S1 and S2 such that C = S1∪S2 and S1∩S2 = ∅. Suppose
that S1 and S2 are disconnected. In other words, there are no edges between nodes in S1 and S2. We then require a
quality function to have the property that ∆H(S1 7→ ∅) > 0 and ∆H(S2 7→ ∅) > 0. This guarantees that a partition
can always be improved by splitting a community into its connected components. This comes naturally for most
definitions of a community, but this is not the case when considering for example negative links [1].

Because nodes in an aggregate graph are sets themselves, it is convenient to define some recursive properties.

Definition 1. The recursive size of a set S is defined as

‖S‖ =
∑
s∈S
‖s‖, (A1)

where ‖s‖ = 1 if s is not a set itself. The flattening operation for a set S is defined as

flat(S) =
⋃
s∈S

flat(s), (A2)

where flat(s) = s if s is not a set itself. A set that has been flattened is called a flat set.

∗ v.a.traag@cwts.leidenuniv.nl

mailto:v.a.traag@cwts.leidenuniv.nl

2

The recursive size of a set corresponds to the usual definition of set size in case the elements of a set are not
sets themselves, but it generalizes this definition whenever the elements are sets themselves. For example, if S =
{{a, b}, {c}, {d, e, f}}, then

‖S‖ = ‖{a, b}‖+ ‖{c}‖+ ‖{d, e, f}‖
= (‖a‖+ ‖b‖) + ‖c‖+ (‖d‖+ ‖e‖+ ‖f‖)
= 2 + 1 + 3 = 6.

This contrasts with the traditional size of a set, which is |S| = 3, because S contains 3 elements. The fact that the
elements are sets themselves plays no role in the traditional size of a set. The flattening of S is

flat(S) = flat({a, b}) ∪ flat({c}) ∪ flat({d, e, f})
= a ∪ b ∪ c ∪ d ∪ e ∪ f
= {a, b, c, d, e, f}.

Note that ‖S‖ = |flat(S)|.

Definition 2. The flattening operation for a partition P is defined as

flat∗(P) = {flat(C) | C ∈ P}. (A3)

Hence, flat∗(P) denotes the operation in which each community C ∈ P is flattened. A partition that has been
flattened is called a flat partition.

For any partition of an aggregate graph, the equivalent partition of the base graph can be obtained by applying
the flattening operation.

Additionally, we need some terminology to describe the connectivity of communities.

Definition 3. Let G = (V,E) be a graph, and let P be a partition of G. Furthermore, let H(C) be the subgraph
induced by a community C ∈ P , i.e. V (H) = C and E(H) = {(u, v) | (u, v) ∈ E(G), u, v ∈ C}. A community C ∈ P
is called connected if H(C) is a connected graph. Conversely, a community C ∈ P is called disconnected if H(C) is a
disconnected graph.

The mathematical proofs presented in this paper rely on the Constant Potts Model (CPM) [2]. This quality function
has important advantages over modularity. In particular, unlike modularity, CPM does not suffer from the problem
of the resolution limit [2, 3]. Moreover, our mathematical definitions and proofs are quite elegant when expressed in
terms of CPM. The CPM quality function is defined as

H(G,P) =
∑
C∈P

[
E(C,C)− γ

(
‖C‖

2

)]
, (A4)

where E(C,D) = |{(u, v) ∈ E(G) | u ∈ C, v ∈ D}| denotes the number of edges between nodes in communities C and
D. Note that this definition can also be used for aggregate graphs because E(G) is a multiset.

The mathematical results presented in this paper also extend to modularity, although the formulations are less
elegant. Results for modularity are straightforward to prove by redefining the recursive size ‖S‖ of a set S. We need
to define the size of a node v in the base graph as ‖v‖ = kv instead of ‖v‖ = 1, where kv is the degree of node v.
Furthermore, we need to rescale the resolution parameter γ by 2m. Modularity can then be written as

H(G,P) =
∑
C∈P

[
E(C,C)− γ

2m

(
‖C‖

2

)]
. (A5)

Note that, in addition to the overall multiplicative factor of 1
2m , this adds a constant γ

2m
∑
C
‖C‖

2 = γ
2 to the ordinary

definition of modularity [4]. However, this does not matter for optimisation or for the proofs.
As discussed in the main text, the Louvain and the Leiden algorithm can be iterated by performing multiple

consecutive iterations of the algorithm, using the partition identified in one iteration as starting point for the next
iteration. In this way, a sequence of partitions P0,P1, . . . is obtained such that Pt+1 = Louvain(G,Pt) or Pt+1 =
Leiden(G,Pt). The initial partition P0 usually is the singleton partition of the graph G, i.e. P0 = {{v} | v ∈ V }.

3

1: function Louvain(Graph G, Partition P)
2: do
3: P ←MoveNodes(G,P) . Move nodes between communities
4: done ← |P | = |V (G)| . Terminate when each community consists of only one node
5: if not done then
6: G← AggregateGraph(G,P) . Create aggregate graph based on partition P
7: P ← SingletonPartition(G) . Assign each node in aggregate graph to its own community
8: end if
9: while not done

10: return flat∗(P)
11: end function

12: function MoveNodes(Graph G, Partition P)
13: do
14: Hold = H(P)
15: for v ∈ V (G) do . Visit nodes (in random order)
16: C′ ← arg maxC∈P∪∅∆HP (v 7→ C) . Determine best community for node v
17: if ∆HP (v 7→ C′) > 0 then . Perform only strictly positive node movements
18: v 7→ C′ . Move node v to community C′
19: end if
20: end for
21: while H(P) > Hold . Continue until no more nodes can be moved
22: return P
23: end function

24: function AggregateGraph(Graph G, Partition P)
25: V ← P . Communities become nodes in aggregate graph
26: E ← {(C,D) | (u, v) ∈ E(G), u ∈ C ∈ P , v ∈ D ∈ P} . E is a multiset
27: return Graph(V,E)
28: end function

29: function SingletonPartition(Graph G)
30: return {{v} | v ∈ V (G)} . Assign each node to its own community
31: end function

ALGORITHM A.1. Louvain algorithm.

Appendix B: Disconnected communities in the Louvain algorithm

In this appendix, we analyse the problem that communities obtained using the Louvain algorithm may be discon-
nected. This problem is also discussed in the main text, using the example presented in Fig. 2. However, the main
text offers no numerical details. These details are provided below.

We consider the CPM quality function with a resolution of γ = 1
7 . In the example presented in Fig. 2, the edges

between nodes 0 and 1 and between nodes 0 and 4 have a weight of 2, as indicated by the thick lines in the figure.
All other edges have a weight of 1. The Louvain algorithm starts from a singleton partition, with each node being
assigned to its own community. The algorithm then keeps iterating over all nodes, moving each node to its optimal
community. Depending on the order in which the nodes are visited, the following could happen. Node 1 is visited
first, followed by node 4. Nodes 1 and 4 join the community of node 0, because the weight of the edges between nodes
0 and 1 and between nodes 0 and 4 is sufficiently high. For node 1, the best move clearly is to join the community of
node 0. For node 4, the benefit of joining the community of nodes 0 and 1 then is 2−γ ·2 = 12

7 . This is larger than the
benefit of joining the community of node 5 or 6, which is 1−γ ·1 = 6

7 . Next, nodes 2, 3, 5 and 6 are visited. For these
nodes, it is beneficial to join the community of nodes 0, 1 and 4, because joining this community has a benefit of at
least 1− γ · 6 = 1

7 > 0. This then yields the situation portrayed in Fig. 2(a). After some node movements in the rest
of the graph, some neighbours of node 0 in the rest of the graph end up together in a new community. Consequently,
when node 0 is visited, it can best be moved to this new community, which gives the situation depicted in Fig. 2(b).
In particular, suppose there are 5 nodes in the new community, all of which are connected to node 0. In that case, the
benefit for node 0 of moving to this community is 5−γ ·5 = 30

7 , while the benefit of staying in the current community
is only 2 · 2− γ · 6 = 22

7 . After node 0 has moved, nodes 1 and 4 are still locally optimally assigned. For these nodes,
the benefit of moving to the new community of node 0 is 2 − γ · 6 = 8

7 . This is smaller than the benefit of staying
in the current community, which is 2 − γ · 5 = 9

7 . Finally, nodes 2, 3, 5 and 6 are all locally optimally assigned, as

4

1: function Leiden(Graph G, Partition P)
2: do
3: P ←MoveNodesFast(G,P) . Move nodes between communities
4: done ← |P | = |V (G)| . Terminate when each community consists of only one node
5: if not done then
6: Prefined ← RefinePartition(G,P) . Refine partition P
7: G← AggregateGraph(G,Prefined) . Create aggregate graph based on refined partition Prefined
8: P ← {{v | v ⊆ C, v ∈ V (G)} | C ∈ P} . But maintain partition P
9: end if

10: while not done
11: return flat∗(P)
12: end function

13: function MoveNodesFast(Graph G, Partition P)
14: Q← Queue(V (G)) . Make sure that all nodes will be visited (in random order)
15: do
16: v ← Q.remove() . Determine next node to visit
17: C′ ← arg maxC∈P∪∅∆HP (v 7→ C) . Determine best community for node v
18: if ∆HP (v 7→ C′) > 0 then . Perform only strictly positive node movements
19: v 7→ C′ . Move node v to community C′
20: N ← {u | (u, v) ∈ E(G), u /∈ C′} . Identify neighbours of node v that are not in community C′
21: Q.add(N −Q) . Make sure that these neighbours will be visited
22: end if
23: while Q 6= ∅ . Continue until there are no more nodes to visit
24: return P
25: end function

26: function RefinePartition(Graph G, Partition P)
27: Prefined ← SingletonPartition(G) . Assign each node to its own community
28: for C ∈ P do . Visit communities
29: Prefined ←MergeNodesSubset(G,Prefined, C) . Refine community C
30: end for
31: return Prefined
32: end function

33: function MergeNodesSubset(Graph G, Partition P , Subset S)
34: R = {v | v ∈ S,E(v, S − v) ≥ γ‖v‖ · (‖S‖ − ‖v‖)} . Consider only nodes that are well connected within subset S
35: for v ∈ R do . Visit nodes (in random order)
36: if v in singleton community then . Consider only nodes that have not yet been merged
37: T ← {C | C ∈ P , C ⊆ S,E(C, S − C) ≥ γ‖C‖ · (‖S‖ − ‖C‖)} . Consider only well-connected communities

38: Pr(C′ = C) ∼
{

exp
(

1
θ
∆HP (v 7→ C)

)
if ∆HP (v 7→ C) ≥ 0

0 otherwise
for C ∈ T . Choose random community C′

39: v 7→ C′ . Move node v to community C′
40: end if
41: end for
42: return P
43: end function

44: function AggregateGraph(Graph G, Partition P)
45: V ← P . Communities become nodes in aggregate graph
46: E ← {(C,D) | (u, v) ∈ E(G), u ∈ C ∈ P , v ∈ D ∈ P} . E is a multiset
47: return Graph(V,E)
48: end function

49: function SingletonPartition(Graph G)
50: return {{v} | v ∈ V (G)} . Assign each node to its own community
51: end function

ALGORITHM A.2. Leiden algorithm.

5

1− γ · 5 = 2
7 > 0. Hence, we end up with a community that is disconnected. In later stages of the Louvain algorithm,

there will be no possibility to repair this.
The example presented above considers a weighted graph, but this graph can be assumed to be an aggregate graph

of an unweighted base graph, thus extending the example also to unweighted graphs. Although the example uses
the CPM quality function, similar examples can be given for modularity. However, because of the dependency of
modularity on the number of edges m, the calculations for modularity are a bit more complex. Importantly, both for
CPM and for modularity, the Louvain algorithm suffers from the problem of disconnected communities.

Appendix C: Reachability of optimal partitions

In this appendix, we consider two types of move sequences: non-decreasing move sequences and greedy move
sequences. For each type of move sequence, we study whether all optimal partitions are reachable. We first show that
this is not the case for greedy move sequences. In particular, we show that for some optimal partitions there does not
exist a greedy move sequence that is able to reach the partition. We then show that optimal partitions can always
be reached using a non-decreasing move sequence. This result forms the basis for the asymptotic guarantees of the
Leiden algorithm, which are discussed in Appendix D3.

We first define the different types of move sequences.

Definition 4. Let G = (V,E) be a graph, and let P0, . . . ,Pτ be partitions of G. A sequence of partitions P0, . . . ,Pτ
is called a move sequence if for each t = 0, . . . , τ − 1 there exists a node vt ∈ V and a community Ct ∈ Pt ∪ ∅ such
that Pt+1 = Pt(vt 7→ Ct). A move sequence is called non-decreasing if H(Pt+1) ≥ H(Pt) for all t = 0, . . . , τ − 1. A
move sequence is called greedy if H(Pt+1) = maxC H(Pt(vt 7→ C)) for all t = 0, . . . , τ − 1.

In other words, the next partition in a move sequence is obtained by moving a single node to a different community.
Clearly, a greedy move sequence must be non-decreasing, but a non-decreasing move sequence does not need to be
greedy. A natural question is whether for any optimal partition P∗ there exists a move sequence that starts from the
singleton partition and that reaches the optimal partition, i.e., a move sequence P0, . . . ,Pτ with P0 = {{v} | v ∈ V }
and Pτ = P∗. Trivially, it is always possible to reach the optimal partition if we allow all moves—even moves that
decrease the quality function—as is done for example in simulated annealing [5, 6]. However, it can be shown that
there is no need to consider all moves in order to reach the optimal partition. It is sufficient to consider only non-
decreasing moves. On the other hand, considering only greedy moves turns out to be too restrictive to guarantee that
the optimal partition can be reached.

1. Non-decreasing move sequences

We here prove that for any graph there exists a non-decreasing move sequence that reaches the optimal partition
P∗. The optimal partition can be reached in n− |P∗| steps.

Theorem 1. Let G = (V,E) be a graph, and let P∗ be an optimal partition of G. There then exists a non-decreasing
move sequence P0, . . . ,Pτ with P0 = {{v} | v ∈ V }, Pτ = P∗, and τ = n− |P∗|.

Proof. Let C∗ ∈ P∗ be a community in the optimal partition P∗, let v0 ∈ C∗ be a node in this community, and
let C0 = {v0}. Let P0 = {{v} | v ∈ V } be the singleton partition. For t = 1, . . . , |C∗| − 1, let vt ∈ C∗ − Ct−1,
let Ct = {v0, . . . , vt} ∈ Pt, and let Pt = Pt−1(vt 7→ Ct−1). We prove by contradiction that there always exists a
non-decreasing move sequence P0, . . . ,P|C∗|−1. Assume that for some t there does not exist a node vt for which
∆H(vt 7→ Ct−1) ≥ 0. Let S = C∗ − Ct−1 and R = Ct−1. For all v ∈ S,

E(v,R)− γ‖v‖ · ‖R‖ < 0.

This implies that

E(S,R) =
∑
v∈S

E(v,R) < γ‖S‖ · ‖R‖.

However, by optimality, for all S ⊆ C∗ and R = C∗ − S,

E(S,R) ≥ γ‖S‖ · ‖R‖.

6

a)

b)

0 12

3

4

5

6

7

0 12

3

4

5

6

7

FIG. C.1. Unreachable optimal partition. A greedy move sequence always reaches the partition in (a), whereas the
partition in (b) is optimal. This demonstrates that for some graphs there does not exist a greedy move sequence that reaches
the optimal partition.

We therefore have a contradiction. Hence, there always exists a non-decreasing move sequence P0, . . . ,P|C∗|−1. This
move sequence reaches the community Ct = C∗. The above reasoning can be applied to each community C∗ ∈ P∗.
Consequently, each of these communities can be reached using a non-decreasing move sequence. In addition, for each
community C∗ ∈ P∗, this can be done in |C∗| − 1 steps, so that in total τ =

∑
C∗∈P∗(|C∗| − 1) = n− |P∗| steps are

needed. �

2. Greedy move sequences

We here show that there does not always exist a greedy move sequence that reaches the optimal partition of a
graph. To show this, we provide a counterexample in which we have a graph for which there is no greedy move
sequence that reaches the optimal partition. Our counterexample includes two nodes that should be assigned to
different communities. However, because there is a strong connection between the nodes, in a greedy move sequence
the nodes are always assigned to the same community. We use the CPM quality function in our counterexample, but
a similar counterexample can be given for modularity. The counterexample is illustrated in Fig. C.1. The thick edges
have a weight of 3, while the thin ones have a weight of 3

2 . The resolution is set to γ = 1. In this situation, nodes 0
and 1 are always joined together in a community. This has a benefit of 3− γ = 2, which is larger than the benefit of
3 · 3

2 − γ · 3 = 3
2 obtained by node 0 joining the community of nodes 2, 3 and 4 or node 1 joining the community of

nodes 5, 6 and 7. Hence, regardless of the exact node order, the partition reached by a greedy move sequence always
consists of three communities. This gives a total quality of

2 ·
(

3 · 3− γ 3 · 2
2

)
+
(

3− γ 2 · 1
2

)
= 14,

while the optimal partition has only two communities, consisting of nodes {0, 2, 3, 4} and {1, 5, 6, 7} and resulting in
a total quality of

2 ·
(

3 · 3 + 3 · 3
2 − γ

4 · 3
2

)
= 15.

Hence, a greedy move sequence always reaches the partition in Fig. C.1(a), whereas the partition in Fig. C.1(b) is
optimal.

7

Appendix D: Guarantees of the Leiden algorithm

In this appendix, we discuss the guarantees provided by the Leiden algorithm. The guarantees of the Leiden
algorithm partly rely on the randomness in the algorithm. We therefore require that θ > 0. Before stating the
guarantees of the Leiden algorithm, we first define a number of properties. We start by introducing some relatively
weak properties, and we then move on to stronger properties. In the following definitions, P is a flat partition of a
graph G = (V,E).

Definition 5 (γ-separation). We call a pair of communities C,D ∈ P γ-separated if ∆H(C 7→ D) = ∆H(D 7→ C) ≤ 0.
A community C ∈ P is γ-separated if C is γ-separated with respect to all D ∈ P . A partition P is γ-separated if all
C ∈ P are γ-separated.

Definition 6 (γ-connectivity). We call a set of nodes S ⊆ C ∈ P γ-connected if |S| = 1 or if S can be partitioned into
two sets R and T such that E(R, T) ≥ γ‖R‖ · ‖T‖ and R and T are γ-connected. A community C ∈ P is γ-connected
if S = C is γ-connected. A partition P is γ-connected if all C ∈ P are γ-connected.

Definition 7 (Subpartition γ-density). We call a set of nodes S ⊆ C ∈ P subpartition γ-dense if the following two
conditions are satisfied: (i) ∆H(S 7→ ∅) ≤ 0 and (ii) |S| = 1 or S can be partitioned into two sets R and T such that
E(R, T) ≥ γ‖R‖ · ‖T‖ and R and T are subpartition γ-dense. A community C ∈ P is subpartition γ-dense if S = C
is subpartition γ-dense. A partition P is subpartition γ-dense if all C ∈ P are subpartition γ-dense.

Definition 8 (Node optimality). We call a community C ∈ P node optimal if ∆H(v 7→ D) ≤ 0 for all v ∈ C and all
D ∈ P (or D = ∅). A partition P is node optimal if all C ∈ P are node optimal.

Definition 9 (Uniform γ-density). We call a community C ∈ P uniformly γ-dense if ∆H(S 7→ ∅) ≤ 0 for all S ⊆ C.
A partition P is uniformly γ-dense if all C ∈ P are uniformly γ-dense.

Definition 10 (Subset optimality). We call a community C ∈ P subset optimal if ∆H(S 7→ D) ≤ 0 for all S ⊆ C
and all D ∈ P (or D = ∅). A partition P is subset optimal if all C ∈ P are subset optimal.

Subset optimality clearly is the strongest property and subsumes all other properties. Uniform γ-density is subsumed
by subset optimality but may be somewhat more intuitive to grasp. It states that any subset of nodes in a community
is always connected to the rest of the community with a density of at least γ. In other words, for all S ⊆ C ∈ P we
have

E(S,C − S) ≥ γ‖S‖ · ‖C − S‖. (D1)

Imposing the restrictionD = ∅ in the definition of subset optimality gives the property of uniform γ-density, restricting
S to consist of only one node gives the property of node optimality, and imposing the restriction S = C yields the
property of γ-separation. Uniform γ-density implies subpartition γ-density, which in turn implies γ-connectivity.
Subpartition γ-density also implies that individual nodes cannot be split from their community (but notice that this
is a weaker property than node optimality). Ordinary connectivity is implied by γ-connectivity, but not vice versa.
Obviously, any optimal partition is subset optimal, but not the other way around: a subset optimal partition is not
necessarily an optimal partition (see Fig. C.1(a) for an example).

In the rest of this appendix, we show that the Leiden algorithm guarantees that the above properties hold for
partitions produced by the algorithm. The properties hold either in each iteration, in every stable iteration, or
asymptotically. The first two properties of γ-separation and γ-connectivity are guaranteed in each iteration of the
Leiden algorithm. We prove this in Appendix D1. The next two properties of subpartition γ-density and node
optimality are guaranteed in every stable iteration of the Leiden algorithm, as we prove in Appendix D2. Finally,
in Appendix D3 we prove that asymptotically the Leiden algorithm guarantees the last two properties of uniform
γ-density and subset optimality.

1. Guarantees in each iteration

In order to show that the property of γ-separation is guaranteed in each iteration of the Leiden algorithm, we first
need to prove some results for the MoveNodesFast function in the Leiden algorithm.
We start by introducing some notation. The MoveNodesFast function iteratively evaluates nodes. When a node

is evaluated, either it is moved to a different (possibly empty) community or it is kept in its current community,
depending on what is most beneficial for the quality function. Let G = (V,E) be a graph, let P be a partition
of G, and let P ′ = MoveNodesFast(G,P). We denote by P0, . . . ,Pr a sequence of partitions generated by the

8

MoveNodesFast function, with P0 = P denoting the initial partition, P1 denoting the partition after the first
evaluation of a node has taken place, and so on. Pr = P ′ denotes the partition after the final evaluation of a node
has taken place. The MoveNodesFast function maintains a queue of nodes that still need to be evaluated. Let Qs
be the set of nodes that still need to be evaluated after s node evaluations have taken place, with Q0 = V . Also, for
all v ∈ V , let Cvs ∈ Ps be the community in which node v finds itself after s node evaluations have taken place.
The following lemma states that at any point in the MoveNodesFast function, if a node is disconnected from the

rest of its community, the node will find itself in the queue of nodes that still need to be evaluated.

Lemma 2. Using the notation introduced above, for all v ∈ V and all s, we have v ∈ Qs or |Cvs | = 1 or E(v, Cvs−v) > 0.

Proof. We are going to prove the lemma for an arbitrary node v ∈ V . We provide a proof by induction. We observe
that v ∈ Q0, which provides our inductive base. Suppose that v ∈ Qs−1 or |Cvs−1| = 1 or E(v, Cvs−1 − v) > 0. This is
our inductive hypothesis. We are going to show that v ∈ Qs or |Cvs | = 1 or E(v, Cvs − v) > 0. If v ∈ Qs, this result is
obtained in a trivial way. Suppose therefore that v /∈ Qs. We then need to show that |Cvs | = 1 or E(v, Cvs − v) > 0.
To do so, we distinguish between two cases.

We first consider the case in which v ∈ Qs−1. If v ∈ Qs−1 and v /∈ Qs, node v has just been evaluated. We then
obviously have |Cvs | = 1 or E(v, Cvs − v) > 0. Otherwise we would have |Cvs | > 1 and E(v, Cvs − v) = 0, which would
mean that node v is disconnected from the rest of its community. Since node v has just been evaluated, this is not
possible.

We now consider the case in which v /∈ Qs−1. Let u ∈ V be the node that has just been evaluated, i.e., u ∈ Qs−1
and u /∈ Qs. If node u has not been moved to a different community, then Ps = Ps−1. Obviously, if |Cvs−1| = 1 or
E(v, Cvs−1 − v) > 0, we then have |Cvs | = 1 or E(v, Cvs − v) > 0. On the other hand, if node u has been moved to a
different community, we have (u, v) /∈ E(G) or v ∈ Cus . To see this, note that if (u, v) ∈ E(G) and v /∈ Cus , we would
have v ∈ Qs (following line 21 in Algorithm A.2). This contradicts our assumption that v /∈ Qs, so that we must have
(u, v) /∈ E(G) or v ∈ Cus . In other words, either there is no edge between nodes u and v or node u has been moved
to the community of node v. In either case, it is not possible that the movement of node u causes node v to become
disconnected from the rest of its community. Hence, in either case, if |Cvs−1| = 1 or E(v, Cvs−1− v) > 0, then |Cvs | = 1
or E(v, Cvs − v) > 0. �

Using Lemma 2, we now prove the following lemma, which states that for partitions provided by the MoveNodes-
Fast function it is guaranteed that singleton communities cannot be merged with each other.

Lemma 3. Let G = (V,E) be a graph, let P be a partition of G, and let P ′ = MoveNodesFast(G,P). Then for
all pairs C,D ∈ P ′ such that |C| = |D| = 1, we have ∆H(C 7→ D) = ∆H(D 7→ C) ≤ 0.

Proof. We are going to prove the lemma for an arbitrary pair of communities C,D ∈ P ′ such that |C| = |D| = 1.
We use the notation introduced above. If C,D ∈ Ps for all s, it is clear that ∆H(C 7→ D) = ∆H(D 7→ C) ≤ 0.
Otherwise, consider t such that C,D ∈ Ps for all s ≥ t and either C /∈ Pt−1 or D /∈ Pt−1. Without loss of generality,
we assume that C /∈ Pt−1 and D ∈ Pt−1. Consider v ∈ V such that C = {v}. After t− 1 node evaluations have taken
place, there are two possibilities.

One possibility is that node v is evaluated and is moved to an empty community. This means that moving node v
to an empty community is more beneficial for the quality function than moving node v to community D. It is then
clear that ∆H(C 7→ D) = ∆H(D 7→ C) ≤ 0.
The second possibility is that node v is in a community together with one other node u ∈ V (i.e. {u, v} ∈ Pt−1)

and that this node u is evaluated and is moved to a different community. In this case, v ∈ Qt, as we will now show.
If (u, v) ∈ E(G), this follows from line 21 in Algorithm A.2. If (u, v) /∈ E(G), we have |Cvt−1| = |{u, v}| = 2 and
E(v, Cvt−1 − v) = 0. It then follows from Lemma 2 that v ∈ Qt−1. Since node v is not evaluated in node evaluation t
(node u is evaluated in this node evaluation), v ∈ Qt−1 implies that v ∈ Qt. If v ∈ Qt, at some point s ≥ t, node v is
evaluated. Since C,D ∈ Ps for all s ≥ t, keeping node v in its own singleton community C is more beneficial for the
quality function than moving node v to community D. This means that ∆H(C 7→ D) = ∆H(D 7→ C) ≤ 0. �

Lemma 3 enables us to prove that the property of γ-separation is guaranteed in each iteration of the Leiden
algorithm, as stated in the following theorem.

Theorem 4. Let G = (V,E) be a graph, let Pt be a flat partition of G, and let Pt+1 = Leiden(G,Pt). Then Pt+1
is γ-separated.

Proof. Let G` = (V`, E`) be the aggregate graph at the highest level in the Leiden algorithm, let P` be the initial
partition of G`, and let P ′` = MoveNodesFast(G`,P`). Since we are at the highest level of aggregation, it follows
from line 4 in Algorithm A.2 that |P ′`| = |V`|, which means that |C| = 1 for all C ∈ P ′`. In other words, P ′` is a

9

singleton partition of G`. Lemma 3 then implies that for all C,D ∈ P ′` we have ∆H(C 7→ D) = ∆H(D 7→ C) ≤ 0.
Since Pt+1 = flat∗(P ′`), it follows that for all C,D ∈ Pt+1 we have ∆H(C 7→ D) = ∆H(D 7→ C) ≤ 0. Hence, Pt+1 is
γ-separated. �

The property of γ-separation also holds after each iteration of the Louvain algorithm. In fact, for the Louvain
algorithm this is much easier to see than for the Leiden algorithm. The Louvain algorithm uses the MoveNodes
function instead of the MoveNodesFast function. Unlike the MoveNodesFast function, the MoveNodes function
yields partitions that are guaranteed to be node optimal. This guarantee leads in a straightforward way to the property
of γ-separation for partitions obtained in each iteration of the Louvain algorithm.
We now consider the property of γ-connectivity. By constructing a tree corresponding to the decomposition of

γ-connectivity, we are going to prove that this property is guaranteed in each iteration of the Leiden algorithm.

Theorem 5. Let G = (V,E) be a graph, let Pt be a flat partition of G, and let Pt+1 = Leiden(G,Pt). Then Pt+1
is γ-connected.

Proof. Let G` = (V`, E`) be the aggregate graph at level ` in the Leiden algorithm, with G0 = G being the base graph.
We say that a node v ∈ V` is γ-connected if flat(v) is γ-connected. We are going to proceed inductively. Each node
in the base graph G0 is trivially γ-connected. This provides our inductive base. Suppose that each node v ∈ V`−1 is
γ-connected, which is our inductive hypothesis. Each node v ∈ V` is obtained by merging one or more nodes at the
preceding level, i.e. v = {u | u ∈ S} for some set S ⊆ V`−1. If v consists of only one node at the preceding level, v is
immediately γ-connected by our inductive hypothesis. The set of nodes S is constructed in the MergeNodesSubset
function. There exists some order u1, . . . , uk in which nodes are added to S. Let Si = {u1, . . . , ui} be the set obtained
after adding node ui. It follows from line 38 in Algorithm A.2 that E(ui+1, Si) ≥ γ‖ui+1‖ · ‖Si‖ for i = 1, . . . , k − 1.
Taking into account that each ui is γ-connected by our inductive hypothesis, this implies that each set Si is γ-
connected. Since S = Sk is γ-connected, node v is γ-connected. Hence, each node v ∈ V` is γ-connected. This
also holds for the nodes in the aggregate graph at the highest level in the Leiden algorithm, which implies that all
communities in Pt+1 are γ-connected. In other words, Pt+1 is γ-connected. �

Note that the theorem does not require Pt to be connected. Even if a disconnected partition is provided as input
to the Leiden algorithm, performing a single iteration of the algorithm will give a partition that is γ-connected.

2. Guarantees in stable iterations

As discussed earlier, the Leiden algorithm can be iterated until Pt+1 = Leiden(G,Pt). Likewise, the Louvain
algorithm can be iterated until Pt+1 = Louvain(G,Pt). We say that an iteration is stable if Pt+1 = Pt, in which
case we call Pt (or Pt+1) a stable partition.
There is a subtle point when considering stable iterations. In order for the below guarantees to hold, we need to

ensure that H(Pt+1) = H(Pt) implies Pt+1 = Pt. In both the Leiden algorithm and the Louvain algorithm, we
therefore consider only strictly positive improvements (see line 17 in Algorithm A.1 and line 18 in Algorithm A.2). In
other words, if a node movement leads to a partition that has the same quality as the current partition, the current
partition is preferred and the node movement will not take place. This then also implies that H(Pt+1) > H(Pt) if
Pt+1 6= Pt.
The Leiden algorithm guarantees that a stable partition is subpartition γ-dense, as stated in the following theorem.

Note that the proof of the theorem has a structure that is similar to the structure of the proof of Theorem 5 presented
above.

Theorem 6. Let G = (V,E) be a graph, let Pt be a flat partition of G, and let Pt+1 = Leiden(G,Pt). If Pt+1 = Pt,
then Pt+1 = Pt is subpartition γ-dense.

Proof. Suppose we have a stable iteration. Hence, Pt+1 = Pt. Let G` = (V`, E`) be the aggregate graph at level
` in the Leiden algorithm, with G0 = G being the base graph. We say that a node v ∈ V` is subpartition γ-dense
if the set of nodes flat(v) is subpartition γ-dense. We first observe that for all levels ` and all nodes v ∈ V` we
have ∆H(v 7→ ∅) ≤ 0. To see this, note that if ∆H(v 7→ ∅) > 0 for some level ` and some node v ∈ V`, the
MoveNodesFast function would have removed node v from its community, which means that the iteration would
not have been stable. We are now going to proceed inductively. Since ∆H(v 7→ ∅) ≤ 0 for all nodes v ∈ V0,
each node in the base graph G0 is subpartition γ-dense. This provides our inductive base. Suppose that each node
v ∈ V`−1 is subpartition γ-dense, which is our inductive hypothesis. Each node v ∈ V` is obtained by merging one
or more nodes at the preceding level, i.e. v = {u | u ∈ S} for some set S ⊆ V`−1. If v consists of only one node
at the preceding level, v is immediately subpartition γ-dense by our inductive hypothesis. The set of nodes S is

10

constructed in the MergeNodesSubset function. There exists some order u1, . . . , uk in which nodes are added to
S. Let Si = {u1, . . . , ui} be the set obtained after adding node ui. It follows from line 38 in Algorithm A.2 that
E(ui+1, Si) ≥ γ‖ui+1‖ ·‖Si‖ for i = 1, . . . , k−1. Furthermore, line 37 in Algorithm A.2 ensures that ∆H(Si 7→ ∅) ≤ 0
for i = 1, . . . , k − 1. We also have ∆H(Sk 7→ ∅) ≤ 0, since Sk = S = v and since ∆H(v 7→ ∅) ≤ 0, as observed
above. Taking into account that each ui is subpartition γ-dense by our inductive hypothesis, this implies that each
set Si is subpartition γ-dense. Since S = Sk is subpartition γ-dense, node v is subpartition γ-dense. Hence, each node
v ∈ V` is subpartition γ-dense. This also holds for the nodes in the aggregate graph at the highest level in the Leiden
algorithm, which implies that all communities in Pt+1 = Pt are subpartition γ-dense. In other words, Pt+1 = Pt is
subpartition γ-dense. �

Subpartition γ-density does not imply node optimality. It guarantees only that ∆H(v 7→ ∅) ≤ 0 for all v ∈ V , not
that ∆H(v 7→ D) ≤ 0 for all v ∈ V and all D ∈ P . However, it is easy to see that all nodes are locally optimally
assigned in a stable iteration of the Leiden algorithm. This is stated in the following theorem.

Theorem 7. Let G = (V,E) be a graph, let Pt be a flat partition of G, and let Pt+1 = Leiden(G,Pt). If Pt+1 = Pt,
then Pt+1 = Pt is node optimal.

Proof. Suppose we have a stable iteration. Hence, Pt+1 = Pt. We are going to give a proof by contradiction. Assume
that Pt+1 = Pt is not node optimal. There then exists a node v ∈ C ∈ Pt and a community D ∈ Pt (or D = ∅)
such that ∆H(v 7→ D) > 0. The MoveNodesFast function then moves node v to community D. This means that
Pt+1 6= Pt and that the iteration is not stable. We now have a contradiction, which implies that the assumption of
Pt+1 = Pt not being node optimal must be false. Hence, Pt+1 = Pt is node optimal. �

In the same way, it is straightforward to see that the Louvain algorithm also guarantees node optimality in a stable
iteration.

When the Louvain algorithm reaches a stable iteration, the partition is γ-separated and node optimal. Since the
Louvain algorithm considers only moving nodes and merging communities, additional iterations of the algorithm will
not lead to further improvements of the partition. Hence, in the case of the Louvain algorithm, if Pt+1 = Pt, then
Pτ = Pt for all τ ≥ t. In other words, when the Louvain algorithm reaches a stable iteration, all future iterations will
be stable as well. This contrasts with the Leiden algorithm, which may continue to improve a partition after a stable
iteration. We consider this in more detail below.

3. Asymptotic guarantees

When an iteration of the Leiden algorithm is stable, this does not imply that the next iteration will also be stable.
Because of randomness in the refinement phase of the Leiden algorithm, a partition that is stable in one iteration
may be improved in the next iteration. However, at some point, a partition will be obtained for which the Leiden
algorithm is unable to make any further improvements. We call this an asymptotically stable partition. Below, we
prove that an asymptotically stable partition is uniformly γ-dense and subset optimal.

We first need to show what it means to define asymptotic properties for the Leiden algorithm. The Leiden algorithm
considers moving a node to a different community only if this results in a strict increase in the quality function. As
stated in the following lemma, this ensures that at some point the Leiden algorithm will find a partition for which it
can make no further improvements.

Lemma 8. Let G = (V,E) be a graph, and let Pt+1 = Leiden(G,Pt). There exists a τ such that Pt = Pτ for all
t ≥ τ .

Proof. Only strict improvements can be made in the Leiden algorithm. Consequently, if Pt+1 6= Pt, then Pt+1 6= Pt′
for all t′ ≤ t. Assume that there does not exist a τ such that Pt = Pτ for all t ≥ τ . Then for any τ there exists a
t > τ such that Pt 6= Pt′ for all t′ < t. This implies that the number of unique elements in the sequence P0,P1, . . .
is infinite. However, this is not possible, because the number of partitions of G is finite. Hence, the assumption that
there does not exist a τ such that Pt = Pτ for all t ≥ τ is false. �

According to the above lemma, the Leiden algorithm progresses towards a partition for which no further improve-
ments can be made. We can therefore define the notion of an asymptotically stable partition.

Definition 11. Let G = (V,E) be a graph, and let Pt+1 = Leiden(G,Pt). We call Pτ asymptotically stable if
Pt = Pτ for all t ≥ τ .

We also need to define the notion of a minimal non-optimal subset.

11

Definition 12. Let G = (V,E) be a graph, and let P be a partition of G. A set S ⊆ C ∈ P is called a non-optimal
subset if ∆H(S 7→ D) > 0 for some D ∈ P or for D = ∅. A set S ⊆ C ∈ P is called a minimal non-optimal subset if
S is a non-optimal subset and if there does not exist a non-optimal subset S′ ⊂ S.

The following lemma states an important property of minimal non-optimal subsets.

Lemma 9. Let G = (V,E) be a graph, let P be a partition of G, and let S ⊆ C ∈ P be a minimal non-optimal
subset. Then {S} is an optimal partition of the subgraph induced by S.

Proof. Assume that {S} is not an optimal partition of the subgraph induced by S. There then exists a set S1 ∈ S
such that

E(S1, S2)− γ‖S1‖ · ‖S2‖ < 0, (D2)

where S2 = S − S1. Let D ∈ P or D = ∅ such that ∆H(S → D) > 0. Hence,

E(S,D)− γ‖S‖ · ‖D‖ > E(S,C − S)− γ‖S‖ · ‖C − S‖. (D3)

Because S is a minimal non-optimal subset, S1 and S2 cannot be non-optimal subsets. Therefore, ∆H(S1 → D) ≤ 0
and ∆H(S2 → D) ≤ 0, or equivalently,

E(S1, D)− γ‖S1‖ · ‖D‖ ≤ E(S1, C − S1)− γ‖S1‖ · ‖C − S1‖ (D4)

and

E(S2, D)− γ‖S2‖ · ‖D‖ ≤ E(S2, C − S2)− γ‖S2‖ · ‖C − S2‖. (D5)

It then follows from Eqs. (D4) and (D5) that

E(S,D)− γ‖S‖ · ‖D‖ =
(
E(S1, D)− γ‖S1‖ · ‖D‖

)
+
(
E(S2, D)− γ‖S2‖ · ‖D‖

)
≤
(
E(S1, C − S1)− γ‖S1‖ · ‖C − S1‖

)
+
(
E(S2, C − S2)− γ‖S2‖ · ‖C − S2‖

)
.

This can be written as

E(S,D)− γ‖S‖ · ‖D‖ ≤
(
E(S1, C − S) + E(S1, S2)− γ‖S1‖ · ‖C − S‖ − γ‖S1‖ · ‖S2‖

)
+
(
E(S2, C − S) + E(S2, S1)− γ‖S2‖ · ‖C − S‖ − γ‖S2‖ · ‖S1‖

)
= E(S,C − S) + 2E(S1, S2)− γ‖S‖ · ‖C − S‖ − 2γ‖S1‖ · ‖S2‖.

Using Eq. (D2), we then obtain

E(S,D)− γ‖S‖ · ‖D‖ < E(S,C − S)− γ‖S‖ · ‖C − S‖.

However, this contradicts Eq. (D3). The assumption that {S} is not an optimal partition of the subgraph induced by
S is therefore false. �

Building on the results for non-decreasing move sequences reported in Appendix C 1, the following lemma states
that any minimal non-optimal subset can be found by the MergeNodeSubset function.

Lemma 10. Let G = (V,E) be a graph, let P be a partition of G, and let S ⊆ C ∈ P be a minimal non-optimal
subset. Let Prefined = MergeNodesSubset(G, {{v} | v ∈ V }, C). There then exists a move sequence in the
MergeNodesSubset function such that S ∈ Prefined.

Proof. We are going to prove that there exists a move sequence P0, . . . ,P|C| in the MergeNodesSubset function
such that S ∈ P|C|. The move sequence consists of two parts, P0, . . . ,P|S| and P|S|, . . . ,P|C|. In the first part, each
node in S is considered for moving. In the second part, each node in C−S is considered for moving. Note that in the
MergeNodesSubset function a node can always stay in its own community when it is considered for moving. We
first consider the first part of the move sequence P0, . . . ,P|C|. Let P0, . . . ,P|S| be a non-decreasing move sequence
such that P0 = {{v} | v ∈ V } and S ∈ P|S|. To see that such a non-decreasing move sequence exists, note that
according to Lemma 9 {S} is an optimal partition of the subgraph induced by S and that according to Theorem 1 an
optimal partition can be reached using a non-decreasing move sequence. This non-decreasing move sequence consists
of |S| − 1 moves. There is one node in S that can stay in its own community. Note further that each move in the
move sequence P0, . . . ,P|S| satisfies the conditions specified in lines 34 and 37 in Algorithm A.2. This follows from
Definition 12. In the second part of the move sequence P0, . . . ,P|C|, we simply have P|S| = . . . = P|C|. Hence, each
node in C − S stays in its own community. Since S ∈ P|S|, we then also have S ∈ P|C|. �

12

As long as there are subsets of communities that are not optimally assigned, the MergeNodesSubset function can
find these subsets. In the MoveNodesFast function, these subsets are then moved to a different community. In this
way, the Leiden algorithm continues to identify better partitions. However, at some point, all subsets of communities
are optimally assigned, and the Leiden algorithm will not be able to further improve the partition. The algorithm has
then reached an asymptotically stable partition, and this partition is also subset optimal. This result is formalized in
the following theorem.

Theorem 11. Let G = (V,E) be a graph, and let P be a flat partition of G. Then P is asymptotically stable if and
only if P is subset optimal.

Proof. If P is subset optimal, it follows directly from the definition of the Leiden algorithm that P is asymptotically
stable. Conversely, if P is asymptotically stable, it follows from Lemma 10 that P is subset optimal. To see this,
assume that P is not subset optimal. There then exists a community C ∈ P and a set S ⊂ C such that S is a
minimal non-optimal subset. Let Prefined = MergeNodesSubset(G, {{v} | v ∈ V }, C). Lemma 10 states that there
exists a move sequence in the MergeNodesSubset function such that S ∈ Prefined. If S ∈ Prefined, then S will be
moved from C to a different (possibly empty) community in line 3 in Algorithm A.2. However, this contradicts the
asymptotic stability of P . Asymptotic stability therefore implies subset optimality. �

Since subset optimality implies uniform γ-density, we obtain the following corollary.

Corollary 12. Let G = (V,E) be a graph, and let P be a flat partition of G. If P is asymptotically stable, then P
is uniformly γ-dense.

Appendix E: Bounds on optimality

In this appendix, we prove that the quality of a uniformly γ-dense partition as defined in Definition 9 in Appendix D
provides an upper bound on the quality of an optimal partition.

We first define the intersection of two partitions.

Definition 13. Let G = (V,E) be a graph, and let P1 and P2 be flat partitions of G. We denote the intersection of
P1 and P2 by P = P1 u P2, which is defined as

P = {C ∩D | C ∈ P1, D ∈ P2, C ∩D 6= ∅}. (E1)

The intersection of two partitions consists of the basic subsets that form both partitions. For S,R ∈ P = P1 uP2,
we write S P1∼ R if there exists a community C ∈ P1 such that S,R ⊆ C. Hence, if S P1∼ R, then S and R are subsets
of the same community in P1. Furthermore, for S 6= R, if S P1∼ R, then we cannot have S P2∼ R, since otherwise S and
R would have formed a single subset. In other words, S P1∼ R⇒ S

P2� R and similarly S P2∼ R⇒ S
P1� R.

The following lemma shows how the difference in quality between two partitions can easily be expressed using the
intersection.

Lemma 13. Let G = (V,E) be a graph, let P1 and P2 be flat partitions of G, and let P = P1uP2 be the intersection
of P1 and P2. Then

H(P2)−H(P1) = 1
2
∑
S

P2∼R
S 6=R

[
E(S,R)− γ‖S‖ · ‖R‖

]
− 1

2
∑
S

P1∼R
S 6=R

[
E(S,R)− γ‖S‖ · ‖R‖

]
. (E2)

Proof. For any community C ∈ Pk (k = 1, 2),

E(C,C) =
∑
S∈P
S⊆C

E(S, S) + 1
2
∑
S,R∈P
S,R⊆C
S 6=R

E(S,R)

and (
‖C‖

2

)
=
∑
S∈P
S⊆C

(
‖S‖

2

)
+ 1

2
∑
S,R∈P
S,R⊆C
S 6=R

‖S‖ · ‖R‖.

13

We hence obtain

H(Pk) =
∑
C∈Pk

[
E(C,C)− γ

(
‖C‖

2

)]

=
∑
C∈Pk

∑
S∈P
S⊆C

[
E(S, S)− γ

(
‖S‖

2

)]
+ 1

2
∑
S,R∈P
S,R⊆C
S 6=R

[E(S,R)− γ‖S‖ · ‖R‖]

=
∑
S∈P

[
E(S, S)− γ

(
‖S‖

2

)]
+ 1

2
∑
S

Pk∼R
S 6=R

[E(S,R)− γ‖S‖ · ‖R‖] .

The difference H(P2)−H(P1) then gives the desired result. �

The above lemma enables us to prove the following theorem, stating that the quality of a uniformly γ-dense partition
is not too far from optimal. We stress that this theorem applies only to unweighted graphs.

Theorem 14. Let G = (V,E) be an unweighted graph, let P be a uniformly γ-dense partition of G, and let P∗ be
an optimal partition of G. Then

H(P∗)−H(P) ≤ (1− γ)1
2
∑

C,D∈P
C 6=D

E(C,D). (E3)

Proof. Let P ′ = P u P∗. Consider any S,R ∈ P ′ such that S P∗∼ R. Because the graph G is unweighted, we have
‖S‖ · ‖R‖ ≥ E(S,R). It follows that

E(S,R)− γ‖S‖ · ‖R‖ ≤ (1− γ)E(S,R).

Furthermore, for any community C ∈ P , the number of edges connecting this community with other communities is
E(C, V − C). We therefore have ∑

S⊆C

∑
R

P∗∼S
R 6=S

E(S,R) ≤ E(C, V − C).

To see this, note that R P∗∼ S implies R P� S, so that R 6⊆ C. For any C ∈ P , we then obtain∑
S⊆C

∑
R

P∗∼S
R 6=S

[E(S,R)− γ‖S‖ · ‖R‖] ≤
∑
S⊆C

∑
R

P∗∼S
R 6=S

(1− γ)E(S,R) ≤ (1− γ)E(C, V − C).

By summing over all C ∈ P , this gives∑
S

P∗∼R
S 6=R

[E(S,R)− γ‖S‖ · ‖R‖] ≤ (1− γ)
∑

C,D∈P
C 6=D

E(C,D).

Furthermore, because P is uniformly γ-dense, we have∑
S

P∼R
S 6=R

[E(S,R)− γ‖S‖ · ‖R‖] ≥ 0.

Using these results, Eq. (E3) follows from Lemma 13. �

14

For weighted graphs, an upper bound analogous to Eq. (E3) is

H(P∗)−H(P) ≤
(

1− γ

w̄

) 1
2
∑

C,D∈P
E(C,D), (E4)

where w̄ = maxi,j wi,j is the maximum edge weight.
For modularity instead of CPM, the upper bound for unweighted graphs in Eq. (E3) needs to be adjusted by

rescaling the resolution parameter by 2m. This gives

H(P∗)−H(P) ≤
(

1− γ

2m

) 1
2
∑

C,D∈P
C 6=D

E(C,D). (E5)

The approximation factor of modularity cannot be multiplicative [7], and indeed our bound is additive. Depending
on the partition P , our bound may be better than the bound provided by an SDP algorithm [7].
Note that the bound in Eq. (E3) reduces the trivial bound of (1−γ)m by γ times the number of missing links within

communities, i.e., γ
∑
C

[(‖C‖
2
)
− E(C,C)

]
. To see this, note that m =

∑
C E(C,C) + 1

2
∑
C 6=D E(C,D). Starting

from Eq. (E3), we then obtain

H(P∗) ≤ H(P) + (1− γ)1
2
∑

C,D∈P
C 6=D

E(C,D)

=
∑
C∈P

[
E(C,C)− γ

(
‖C‖

2

)]
+ (1− γ)m− (1− γ)

∑
C∈P

E(C,C)

= (1− γ)m− γ
∑
C∈P

[(
‖C‖

2

)
− E(C,C)

]
.

Finally, Theorem 14 provides a bound on the quality of the optimal partition for a given uniformly γ-dense partition,
but it does not provide an a priori bound on the minimal quality of a uniformly γ-dense partition. Finding such an
a priori bound remains an open problem.

[1] V. A. Traag and J. Bruggeman, Phys. Rev. E 80, 036115 (2009).
[2] V. A. Traag, P. Van Dooren, and Y. Nesterov, Phys. Rev. E 84, 016114 (2011).
[3] S. Fortunato and M. Barthélemy, Proc. Natl. Acad. Sci. U. S. A. 104, 36 (2007).
[4] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).
[5] R. Guimerà and L. A. Nunes Amaral, Nature 433, 895 (2005).
[6] J. Reichardt and S. Bornholdt, Phys. Rev. E 74, 016110 (2006).
[7] T. N. Dinh, X. Li, and M. T. Thai, in 2015 IEEE Int. Conf. Data Min. (IEEE, 2015) pp. 101–110.

http://dx.doi.org/10.1103/PhysRevE.80.036115
http://dx.doi.org/10.1103/PhysRevE.84.016114
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1109/ICDM.2015.139

	Supplementary Information From Louvain to Leiden: guaranteeing well-connected communities
	Pseudo-code and mathematical notation
	Disconnected communities in the Louvain algorithm
	Reachability of optimal partitions
	Non-decreasing move sequences
	Greedy move sequences

	Guarantees of the Leiden algorithm
	Guarantees in each iteration
	Guarantees in stable iterations
	Asymptotic guarantees

	Bounds on optimality
	References

